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Perceiving material properties can be crucial for many tasks—such as determining food edibility, or
avoiding getting splashed—yet the visual perception of materials remains poorly understood. Most pre-
vious research has focussed on optical characteristics (e.g., gloss, translucency). Here, however, we show
that shape also provides powerful visual cues to material properties. When liquids pour, splash or ooze,
they organize themselves into characteristic shapes, which are highly diagnostic of the material’s prop-
erties. Subjects viewed snapshots of simulated liquids of different viscosities, and rated their similarity.
Using maximum likelihood difference scaling (Maloney & Yang, 2003), we reconstructed perceptual
scales for perceived viscosity as a function of the physical viscosity of the simulated fluids. The resulting
psychometric function revealed a distinct sigmoidal shape, distinguishing runny liquids that flow easily
from viscous gels that clump up into piles. A parameter-free model based on 20 simple shape statistics
predicted the subjects’ data surprisingly well. This suggests that when subjects are asked to compare
the viscosity of static snapshots of liquids that differ only in terms of viscosity, they rely primarily on
relatively simple measures of shape similarity.
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1. Introduction

We encounter different fluids, such as water, honey and sham-
poo, almost everywhere in our daily lives (Fig. 1). Many such lig-
uids have distinctive visual appearances, allowing us to tell them
apart visually and to judge their properties, such as whether they
would be slimy, wet or gluey to the touch. Our ability to recognize
fluids is partly due to differences in optical characteristics like col-
or or transparency, but we can also distinguish fluids to some
extent based on their viscosity, which is one of the key properties
determining how they respond to external forces. Less viscous flu-
ids are thin and runny; tend to flow and splash easily; and settle
rapidly to fill containers. More viscous fluids like honey are thick,
stickier and do not flow easily, while very viscous liquids and gels
even tend to pile up into clumps, and change shape very slowly
over time, almost like solids.

The ability to perceive viscosity is not only useful in its own
right—for example, when judging whether milk has gone off, or
whether eggs are sufficiently beaten—but also presumably reflects
more general perceptual abilities to recognize objects, textures and
materials that have highly mutable appearance. In contrast to
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many objects, which have stable and well-defined shapes (e.g.,
shoes, chairs or bananas), a fluid has highly variable structure
depending on the particular forces and actions to which it is sub-
jected. This makes liquids a particularly interesting class of mate-
rial for understanding how the brain identifies features that are
common to different samples. Despite this, very little is known
about how the visual system recognizes entities like liquids and
gels, which do not have a clearly defined structure, and almost
no previous research has investigated the perception of viscosity.

Given the extreme physical complexity of fluid flow processes,
it seems unlikely that the visual system could accurately estimate
the intrinsic physical parameters of liquids through ‘inverse optics’
(e.g. Barrow & Tenenbaum, 1978; Boyaci, Doerschner, & Maloney,
2004; D’Zmura and Iverson, 1993; Maloney & Wandell, 1986)—that
is, by inverting the dynamical equations describing fluid behavior.
It seems more likely that the brain abstracts information about flu-
id properties from various image features that correlate with the
intrinsic physical parameters in natural environments. One impor-
tant source of information is optical motion flow, and we recently
found that image speed is a critical cue to viscosity perception
(Kawabe et al., in press), in agreement with the natural expectation
that viscous liquids flow slowly. However, as Fig. 1 clearly demon-
strates, even static snapshots of liquids can yield vivid subjective
impressions of liquidity, and it is easy to tell which samples are
more or less viscous. This suggests that somehow the visual system
is able to abstract information about material properties only from
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static shape cues even though fluids can adopt practically any
shape.

Here we isolate static cues to viscosity, in order to investigate
how the visual system infers material properties from the way they
self-organize into characteristic shapes. Specifically, we sought to
measure how the subjective impression of viscosity varies as a
function of physical viscosity (i.e., the psychometric function for vis-
cosity), and then to identify which shape cues the visual system
uses to arrive at an impression of the material properties of pour-
ing liquids. To do this, we presented participants with arrays of
static snapshots from computer simulations of flowing fluids, and
asked them to judge how similar the different samples appeared
to be (Fig. 2). Although computer simulations are imperfect
approximations of real physical behavior, they nevertheless pro-
vide compelling impressions of liquids with different viscosities,
and have the important advantage over real materials that it is pos-
sible to precisely control not only the viscosity, but also all other
aspects of the scene, such as the lighting, viewpoint, optical prop-
erties of the material and the velocity of the source through which
liquid enters the scene. To infer the psychometric function relating
changes in physical viscosity to changes in subjective appearance,
we used maximum likelihood difference scaling (MLDS; Knoblauch
& Maloney, 2008; Maloney & Yang, 2003), a technique specifically
designed for estimating supra-threshold appearance differences.
We measured how subjective viscosity varies at different time
points throughout the simulation, and then tested the extent to
which simple shape statistics—derived from the images that were
presented to participants—predict the subjective variations in
viscosity.

2. Experiment
2.1. Materials and methods

2.1.1. Stimuli

We rendered seven 10-s animations of fluids with different vis-
cosities, using Blender 2.61 (Stichting Blender Foundation,
Amsterdam, NL), an open-source 3D computer graphics application.
As shown in Fig. 2, the scene consisted of a fluid source, a fixed solid
sphere, which served as an obstacle for the fluid, and an invisible
reservoir (0.75 x 0.56 x 0.39 m), which filled up over time as the
liquid poured into the scene with a constant velocity of 1.8 m/s in
the x-dimension. Two unidirectional lamps with constant intensity
illuminated the scene from the right side and diagonally from
behind the objects. All fluids were greenish and semitransparent
(alpha = 0.5). The seven liquids differed only in kinematic viscosity,
v=10 x 107Y m?|s with the exponents y={0, 1, 2, 3, 4, 5, 6}. For
comparison, at 20°C, water has v=1.002 x 10-®m?/s, oil has
v=>5 x 107> m?/s, and honey has v =2 x 1073 m?/s. The simulation
resolution was 250 (i.e, the volume was divided into
250 x 250 x 250 cells). Each animation lasted 10s, resulting in
300 individual frames per liquid, which were saved as 1280 x 720
pixel PNG files. Our synthesized fluid animations contained rich
information enough for the participants to judge the simulated vis-
cosity, since in a preliminary experiment, in which we asked the
participants to make a numerical rating of the apparent viscosity
for each animation, we found significant correlations between the
viscosity ratings and the simulated physical viscosity. In the main
experiment, to infer the psychometric function relating changes
in physical viscosity to changes in subjective appearance for sta-
tionary images using MLDS, we selected the following 15 frames
from the sequences: t = {3, 24, 45, 67, 88, 109, 130, 152, 173, 194,
215, 236, 258, 279, 300}. Images were down-sampled to
569 x 320 pixels so that four images could be presented on the
screen simultaneously. The complete set of stimuli is shown in

the Supplemental material (Fig. S1). Participants viewed the stimuli
on a laptop (Lenovo ideapad Z570; screen resolution: 1366 x 768
pixels; refresh rate: 60 Hz), with a glossy LCD display at a freely
chosen, comfortable viewing distance (approximately 60 cm).

2.1.2. Participants

Thirteen observers participated in the experiment (10 female, 3
male; mean age = 28.3 years, SD = 9.1 years). Observers reported
having normal or corrected-to-normal visual acuity. All par-
ticipants were unaware of the aims of the study and gave their
informed consent prior to participation. The experiment was con-
ducted in accordance with the Declaration of Helsinki, and the pro-
cedure was approved by the local ethics committee LEK FBO6 at
Giessen University (proposal number 2009-0008). Observers took
part in the experiment on a voluntary basis and were not paid
for their participation.

2.1.3. Procedure

On each trial, subjects were shown two image pairs (a stimulus
quadruple) that differed from one another in viscosity (Fig. 2). Their
task was to report with a key-press which of the two pairs (left or
right) contained a larger within-pair difference, in a two-alterna-
tive forced choice (2AFC) paradigm. The dissimilarity judgments
were used to estimate a perceptual difference scale within a max-
imum likelihood framework (for details see Knoblauch & Maloney,
2008 and Maloney & Yang, 2003). We used this method to estimate
separate perceptual viscosity scales at 15 different time points (i.e.,
frames) from the simulations. On any given trial the four stimuli in
the quadruple had different viscosities, but showed the same time
frame.

The experiment consisted of 15 blocks, one for each time frame.
Blocks were presented in random order and participants took short
breaks between blocks. Each block consisted of 35 trials, one for

each of the unique quadruples of the 7 stimuli <<Z> where

n=7k= 4>, presented in random order. The positions of the stim-

uli within a quadruple were randomized. Participants had unlimit-
ed time to perform the task.

2.1.4. Analysis

Perceptual scales were computed for each block (i.e. time
frame), and each participant separately, using the MLDS package
for R (R Development Core Team, 2011) from Knoblauch and
Maloney (2008). Accordingly, perceptual scale values were esti-
mated within the framework of a generalized linear model
(GLM). The GLM method has the advantage that scale values of
the least viscous fluid are set to a fixed value of zero (i.e. \r; = 0),
whereas all other scale values (W = \,,.. ., \/;) are unconstrained.
This makes it possible to compare perceptual scales derived from
separate MLDS experiments, as is required for a comparison of dif-
ferent time frames.

2.2. Results

Fig. 3a shows the mean perceptual scales of viscosity derived by
MLDS, averaged across participants as a function of both physical
viscosity and time frame. Across different time frames, most of
the scales show a similar sigmoidal shape, with a slow increase of
scale values for the less viscous stimuli, followed by steeper
changes with intermediate viscosity and finally very small differ-
ences or a plateau for the two most viscous fluids (see Fig. 3b and c).

Besides the striking overall similarity of the perceptual scales
for different time frames, there are also some notable differences.
Dissimilarities between viscosities seem more pronounced for
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Fig. 1. Examples of everyday liquids varying in viscosity: water, honey, shampoo, laundry detergent (from left to right). Even such static snapshots provide a clear impression
of the fluids’ viscosity.

LEFT PAIR press C RIGHT PAIR press M

Fig. 2. A stimulus quadruple from the MLDS experiment consisting of four images showing different viscosities at the same time point (here, frame 130). Observers indicated
in which pair (LEFT or RIGHT) the within-pair difference between the fluids appeared larger.
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Fig. 3. Results of the MLDS experiment. (a) Mean perceptual scales of fluid viscosity averaged across participants as a function of viscosity (values on the x-axis reflect the
exponents of the term: v =10 x 10¥ m?/s) and time frames (non-normalized values). Note that for non-normalized data, the unit of perceptual scales is arbitrary across time
frames and subjects, but that within a given time frame and subject, larger differences correspond to stronger perceived differences between fluids. (b) Example results from
two time slices (frames 88 and 194; bold lines in a). These plots show mean data for the indicated time frame averaged across participants (non-normalized data). Error bars
indicate standard error. Note that because the range of the data is not normalized, but the GLM fitting method is anchored to zero, the variance accumulates towards the
higher end of the physical scale. Thus the error bars do not reflect variance between estimates, but rather differences in estimated standard error of the GLM error term, which
determines the overall range of values estimated by the GLM method. Mean perceptual scales for all frames individually are also shown in Fig. 5. (c) Mean perceptual scale of
viscosity (normalized data) averaged across participants and time frames (bold line) as well as the individual observers’ scales averaged across time frames (thin light green
lines). Note that the mean as well as the individual data were normalized to the range {0, 1}.

some frames than for others, suggesting that viscosity perception is as falling on a common scale. With this caveat it mind, neverthe-
not perfectly constant across time, but depends to some extent on less it is interesting to observe that the earliest time frame we test-

the physical similarity in shape between samples. It is important to ed, (frame 3) showed almost no physical difference in shape
note that the scales inferred by MLDS from different time frames between the different viscosities and thus, unsurprisingly, yielded
are computed independently and thus should not be interpreted an almost flat perceptual scale. However, note that for this specific
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time frame observers are probably not able to order the images
reliably with respect to the true physical scale, which is a necessary
requirement for difference scaling (Maloney & Yang, 2003). In
other frames, e.g. 24, 88 and 109, the reported differences between
viscosities were more pronounced, presumably due to richer visual
cues caused by interactions between the fluid and the rest of the
scene. Example perceptual scales for two time frames, along with
their standard errors, are shown in Fig. 3b (a complete set of scales
for individual time frames can be found in Fig. 5). Individual differ-
ences also become apparent in Fig. 3¢, which shows the mean per-
ceptual scale for each participant averaged across time frames
(faint lines) as well as the grand mean (bold line). Psychometric
functions from most individuals showed broadly similar sigmoidal
shapes (although with different scales, reflecting differences in the
consistency of their responses). This is also obvious from Fig. 3c in
which the psychometric functions are scaled to the same range. An
ANOVA with factors for viscosity and subject revealed a significant
main effect of viscosity (F(6,1274) = 401.87; p <.001), but no main
effect for subjects (F(12,1274) = 1.22; p = .26). However, there was
a significant interaction between the two factors
(F(72,1274)=1.81; p <.001), indicating that not all subjects pro-
duced the same psychometric curves for viscosity. These individual
differences could indicate that participants rely on several different
cues, or at least a different number or weighting of such cues in
their perception of fluid viscosity.

3. Image-based prediction of the perceptual scale of viscosity

To test the hypothesis that the subjects’ percepts of viscosity
were derived from simple heuristics capturing the statistical char-
acteristics of the liquid’s shape, we sought to model the average
perceptual viscosity scale by combining the predictions of a num-
ber of simple 2D shape features.

3.1. Materials and methods

3.1.1. Image statistics

To investigate the viscosity-related differences in shape and
appearance and identify possible cues for the visual perception of
fluid viscosity, twenty 2D shape statistics were calculated for the
images shown to observers. These included statistics of curvature,
orientation, shape, area and perimeter of objects, and the distribu-
tion of pixels in the image. Examples of these statistics are shown
in Fig. 4a (verbal and pictorial descriptions of the complete set of
statistics can be found in Supplemental material: Table S1,
Fig. S2). It is important to note that most of the statistics we used
were not independent but strongly related with one another
because they capture the same underlying shape characteristics
in somewhat different ways. Image statistics were calculated for
the alpha maps of our stimuli, i.e. binary images in which every
pixel that belongs to the background is black and every pixel that
belongs to an object (here the fluid, its rectangular source and the
sphere) is white. In case of multiple objects in the image, e.g. the
source, the sphere or drops, only the largest object was chosen
for subsequent analysis of shape related statistics. All analyses
were calculated using Matlab R2007b (The MathWorks Inc., Natick,
MA, 2007). Results of these 20 statistics for each viscosity as a func-
tion of time are shown in Supplemental material (Fig. S2).

3.1.2. Prediction

We calculated the Euclidian distance between the images of the
least viscous fluid and all other fluids with increasing viscosity
within the space of each of the individual image statistics. Result-
ing distances were normalized to the range {0, 1}, and averaged
across time frames. This created predicted perceptual scales for

each individual image statistic (see Fig. S2). This procedure was
conducted for all 20 image statistics. Although there was no fitting
involved, there was one free parameter implied by the normaliza-
tion to a common range; however, in principle some other normal-
ization may provide a better fit for each curve. To evaluate our
predictions we calculated correlations between each prediction
and the mean perceptual scale from the MLDS experiment. It is
important to emphasize that we did not seek to identify the specific
image measurements made by the human visual system, but
rather to demonstrate that many different measurements predict
similar performance, and thus such heuristics provide a plausible
approach for human vision to exploit. To reduce the number of pre-
dictors, we first embedded all 105 images (15 time frames and sev-
en viscosities) in a common 20 dimensional feature space (defined
by the different image statistics), and performed principal compo-
nent analysis (PCA). To account for the different scales and units for
the different image statistics, results of the image analyses were
first standardized in z-scores before calculating the PCA. We then
calculated the Euclidian distance between each viscosity level
and the least viscous one within the multidimensional PCA space,
equivalent to the distances that were calculated for each image
statistic individually. This was done separately for each frame.
Resulting distances of different frames were then aggregated and
normalized to lie between O and 1. The prediction was again
evaluated in terms of its correlation with the mean perceptual
scale. Note that no explicit parameter fitting was performed in
the combination of features (i.e., we did not estimate an optimal
weighting of the features to match the subjects’ data). This means
that individual statistics (or some other combination) could actual-
ly out-perform the parameter-free combination in terms of pre-
dicting subject performance.

3.2. Results

Even when considered on their own, most of the individual
shape statistics can predict the data very well, as indicated by
the high correlations between the predictions and the normalized
mean perceptual scale. The average correlation across the twenty
different image statistics was r = .95 (SD = .04). Examples of predic-
tions together with mean data can be found in Fig. 4; the complete
set of individual predictions is shown in Supplemental material
(Fig. S2). The best predictions were derived by statistics of the ver-
tical distribution of pixels (i.e. kurtosis, skewness and the standard
deviation), the vertical position of the centroid, and eccentricity.
This is in good agreement with the observation that there are sub-
stantial differences in the way that differently viscous fluids
spread, i.e. highly viscous ones pile up, whereas less viscous fluids
settle and spread more evenly on the ground (see above). Thus,
these measures of the vertical distribution of the liquid seem to
be useful cues that observers could use when comparing the vis-
cosity of the fluids in our scene. Other cues (e.g. the prediction
derived from circularity) seem less adequate. However, we do
not propose that observers base their judgments on individual
shape statistics. Instead, they probably use some combination of
features that capture various aspects of the behavior of the fluid,
as different shape features are likely to be more or less diagnostic
of viscosity in different settings. Thus, we derived a combined pre-
diction from all twenty statistics, which is plotted in Fig. 4, along
with the normalized mean perceptual scale across frames and sub-
jects. As is clear from comparing the predicted and observed per-
ceptual scales, the combination of 20 different shape properties
leads to a very good prediction of the mean perceptual scale
derived by MLDS. The correlation coefficient between the two
was very high (r=.99) and highly significant (p <.001). Thus, the
combined prediction was better than most of the single predictions
or their mean. It is remarkable that such a high correlation could be
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Fig. 4. Image based prediction of the perceptual scale of fluid viscosity. The left panel shows three examples of the 20 shape statistics that were calculated in order to predict
the mean perceptual scale derived in our MLDS experiment. Next to this are the corresponding predictions (magenta lines) of individual image statistics together with the
normalized mean perceptual scale (green lines: error bars show + 1SEM), i.e. these plots show how the perceptual scale is predicted if only the indicated image statistic is
taken into account. These plots also show the correlation coefficients between the data and prediction. Values on the x-axis reflect the exponents of the term: v=10 x 10¥
m?/s. Results and individual predictions of all 20 image statistics are shown in Supplemental material (Fig. S2). We calculated a PCA across the results of all image statistics for
the 105 images used in the experiment. To derive a combined prediction of all statistics we calculated the Euclidian distances (d) between images of all viscosity levels and
the first (least viscous) level of each frame (i) in the PCA space and then aggregated the resulting values across time frames. This prediction was then normalized to lay

between 0 and 1. The combined prediction (magenta) together with the normalized mean perceptual scale (green) is shown in the rightmost plot, which also indicates the
correlation coefficients between the two. Values on the x-axis reflect the exponents of the term: v =10 x 10Y m?/s.

achieved without any explicit fitting of the model to the data,
except by normalizing all predictions to the same range. We
believe this reflects the fact subjects’ judgments of viscosity are
based on statistical measures of the similarity between the shapes,
and that many different shape statistics can capture the underlying
similarities between the different fluids at each point in time.

This general pattern was also reflected in most individual sub-
jects. To characterize how well the model matched individual sub-
ject data, we computed correlation coefficients between each
individual subject’s mean response curve (across time frames)
and the model. The resulting correlation coefficients ranged from
0.51 to 0.99, with a mean of 0.94 and standard deviation of 0.12.
Of course, a model that simply computes values from the image
without any fitting to the data cannot even in principle predict
inter-subject variations. In the future it would be interesting to
model the variations between subjects as weighted combinations
of the different image measurements in the model.

The different image statistics we used here are highly inter-cor-
related and measure the same underlying visual correlates of fluid
viscosity in different manners. In fact, PCA across all images and
statistics showed that only five principal components were neces-
sary to explain more than 95% of the variance; the first two princi-
pal components could already explain 77.99% of the variance. This
reinforces the idea that many different image measurements yield
similar estimates of viscosity similarity.

The MLDS experiment showed that the shape and steepness of
the perceptual scales evolved over time. It is interesting to ask
whether this temporal evolution can also be predicted by the com-
bination of image statistics. Predictions and mean data are shown
in separate plots for each time frame in Fig. 5, along with the cor-
responding correlation coefficients. Correlations were again very

high (M =.96, SD =.02). Although not all of the prediction curves
seem to capture the data very well, the overall trend appears to
be in good agreement for the majority of time frames. Both percep-
tual and predicted scales are flat for the first time frame (frame 3)
and become much steeper in the subsequent frames; for the sec-
ond half of the frames variations between the frames are much
smaller. However, the combination of image statistics predicts
even lower variations especially for high viscosities, than can be
found in the data. Additionally, the peaks of the two distributions
do not coincide (frame 88 for the perceptual scales, but frame 24
for the predictions; this is, however, the second largest peak in
the scales derived from the MLDS data).

4. Control experiments

Two control experiments were conducted to (1) explore if obser-
vers can reliably judge viscosity when there is no other cue present
in the images than the 2D outlines on which our model is based, and
(2) to test the extent to which the shape statistic-based predictions
generalize to simulations of fluids in a wider range of scenes and
contexts. The rating task used for this also helps us to overcome
the potential drawback of the 2AFC method, which may encourage
participants to base their similarity judgments on relatively low-
level properties of the images they compared.

4.1. Materials and methods

4.1.1. Stimuli
Alpha maps of the images used in the MLDS experiment served
as stimuli in the first control experiment, see Fig. 6a. The 105 black
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Fig. 5. Perceptual scales and predictions (non-normalized data). Each plot shows the mean perceptual scale of viscosity derived in the MLDS experiment (bold green lines) as
a function of physical viscosity. Error bars indicate standard error (note that as in Fig. 3, the error bars reflect differences in the range calculated by the GLM method due to the
use of non-normalized data). Data have been scaled to lie on a common scale between 0 and 1 to enable comparison between model and data. Magenta lines show the
combined prediction of the 20 image statistics for the indicated time frame. Correlation coefficients given in the individual plots show the corresponding values for the
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normalized mean data and prediction for each frame individually. Values on the x-axis reflect the exponents of the term: v =10 x 10Y m?/s.

and white images (i.e. 7 viscosities x 15 time frames) were down-
sampled to 1024 x 500 pixels. In the second experiment we used
renderings of ten different scenes of fluids that have recently been
used in another study (Kawabe et al., in press), see Fig. 6b. Each
scene was rendered with five different viscosities and we chose

four of the 60 frames {15, 30, 45, 60} for our study. The images
had a size of 384 x 384 pixels and the contrast was slightly
enhanced to increase the visibility. All stimuli were presented on
the same laptop as in the main experiment at a freely chosen, com-
fortable viewing distance.
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Fig. 6. Examples of stimuli used in the control experiments. (a) Alpha maps of three different viscosities at time frame 24. (b) Six of the ten scenes used in the second rating

task. All images here show different viscosities at time frame 30.

4.1.2. Participants

Ten observers with normal or corrected-to-normal visual acuity
participated in both control experiments (7 female, 3 male; mean
age = 22.8 years, SD = 2.2 years). The order of the control experi-
ments was counterbalanced between participants. Observers were
naive with regard to the aims of the study and gave written
informed consent prior to their participation. The experimental
procedures were approved by the local ethics committee LEK
FBO6 at Giessen University (proposal number 2009-0008) and in
accordance with the declaration of Helsinki. Observers were paid
8€ per hour of participation.

4.1.3. Procedure

Both experiments consisted of a perceptual rating task. On each
trial, one image was presented and remained on the black back-
ground until the participant entered a number between 1 (very lig-
uid) and 7 (very viscous) to indicate their subjective rating of the
fluid’s viscosity in the image. Every image was rated 4 times,
resulting in 420 trials with the alpha images (7 viscosities x 15
time frames x 4 repetitions) and 800 trials with different scenes
(10 scenes x 5 viscosities x 4 time frames x 4 repetitions). Trial
order in each experiment was random. Twenty practice trials were
conducted before both tasks, with a pseudo-random order in which
each viscosity had to appear at least once in the alpha map rating
and each scene and viscosity had to appear at least once in the rat-
ing of different scenes. This was done to give the observers an idea
of the possible range of viscosities and scenes, aiding them to
adjust the range of responses. Participants were informed that all
images contained a liquid, whose viscosity they had to rate. No fur-
ther information was given about the different scenes or the black
and white alpha maps, i.e. they were not informed about the pres-
ence of the obstacle or source. None of the participants had ever
seen the original full renderings from which we derived the alpha
maps before completing the task. Thus, if they are nevertheless
able to interpret the white “splotches” as liquids flowing in 3D
with specific viscosities, some perception of viscosity must emerge
even from these impoverished images. Otherwise their judgments

should be random. Participants had unlimited time to perform the
task and were debriefed afterwards.

4.1.4. Analysis

The data from each experiment were averaged across repeti-
tions, participants, and time frames. To compare perceptual rating
scales with a prediction derived by our model these values were
rescaled to a range between {0 and 1}. To predict the perceptual
rating of the alpha maps we used the same prediction as for the
MLDS task, since this was based on the alpha images we used here.
The prediction of the rating scales for the different scenes was
based on the exact same image analysis described in the previous
section. Here, we used alpha maps of the 200 images used in this
experiment as input.

4.2. Results

4.2.1. Rating of alpha maps

Fig. 7a shows the mean perceptual rating scales of viscosity in
the alpha images averaged across participants as function of time
frames and physical viscosity. Most importantly, participants were
able to rate the viscosity of the fluids when they were only present-
ed with the alpha maps of our original stimuli. If this were not the
case, we should not find such a clear mapping between physical
viscosity and the observers’ responses. The overall shape of the rat-
ing scale appears similar for many time frames, although varying in
the steepness of the curve, see Fig. 7b. The first time frame stands
out in the sense that observers did not report differences between
different viscosities. However, it should be noted that the black and
white images of fluids with different viscosities were almost iden-
tical for this time frame and consisted almost exclusively of a white
circle and a white rectangle on a black background, i.e. the obstacle
and the fluid’s source, which were not mentioned to the par-
ticipants. Thus, they may have assumed one or the other to be a
large blob of very viscous fluid and thus always gave the highest
rating. The fact that they did not report differences between the
fluids is however, consistent with the model prediction, only at a
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Fig. 7. Results of the alpha map rating experiment. (a) Mean rating scales of fluid viscosity averaged across participants as a function of viscosity (values on the x-axis reflect
the exponents of the term: v =10 x 10¥ m?/s) and time frames. (b) Example results from two time slices (frame 24 and 130; bold lines in a). These plots show the average

rating scale + 1 SEM. Mean perceptual scales for all frames individually are shown in Supplemental material (Fig. S3). (c) Combined prediction derived by our model
(magenta) together with mean perceptual scale averaged across time frames and participants (green); error bars show +1 SEM. Data shown here was rescaled

to the range {0, 1}.
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Fig. 8. Results of the viscosity rating in the scene “Twist”. (a) Mean perceptual scales for the four time frames tested in this experiment averaged across participants. Error
bars show = 1SEM. (b) Combined prediction of the perceptual scale derived by the 20 image statistics together with mean perceptual scale and the correlation coefficient
between the two. Data was averaged across the four time frames and 10 observers and then rescaled to the range {0, 1}. Error bars show + 1 SEM. Values on the x-axes reflect
the exponents of the term: v =10 x 10¥ m?/s. A complete data set together with predictions and corresponding correlations for the remaining nine scenes can be found in

Supplemental material (Fig. S4).

different level. Another observation that can be made from Fig. 7a
is that observers on average did not use the entire scale to judge
the viscosity, but rather only a limited range, as is often the case
in rating experiments. For this reason and to be able to compare
the rating scale with the prediction we derived from the model,
Fig. 7c shows the rating scale averaged across observers and time
frames (thick green line) and then rescaled to the range {0, 1}
together with the combined prediction (magenta line) and the
observers individual scales averaged across time frames and nor-
malized (thin green lines). The correlation between the mean rat-
ing scale and the prediction was very high (r=.94, p <.01).

4.2.2. Rating of different scenes

Fig. 8 shows the results of the rating task for one example scene
(“Twist”). As in the other rating task, participants did not use the
entire range of the 7-point rating scale, avoiding extreme values

on the scale, see for example Fig. 8a. The main objective for the cur-
rent task was to test how well the model based on simple shape
statistics generalized to a wider range of scenes and tasks. Fig. 8b
shows the normalized mean rating scale for one scene together
with the scale predicted by our model. The high correlation
(r=.94, p <.01) between the two curves in this example confirms
the apparent similarity between data and prediction. We found a
significant correlation between model and perceptual rating for
seven of the ten scenes; their mean correlation was M=.94
(SD =.06). The correlation for the remaining three scenes was also
moderately high (M =.65, SD=.21). Mean data and predictions
together with the correlation coefficients between the two for all
other scenes is shown in Supplemental material (Fig. S4). Overall
the rating data is captured quite well by the model. As can be
expected the model is closer to the data for some scenes than for
others since different scenes provide a different quantity and
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quality of cues to viscosity. Most importantly, our model can pre-
dict the perceptual experience in most of the scenes, irrespective
of the direction of the fluid flow, its source or the presence of
obstacles.

In addition to the rating task described above. We also tested if
our model can account for the data that was originally collected
with the complete set of stimuli. In Kawabe et al. (in press) par-
ticipants had to rate the viscosity of each of the 50 animations in
a 5-point scale. The results showed that the rated viscosity mono-
tonically increased with the simulated viscosity (see their Fig. 1B).
While the stimuli contained both dynamic (motion) and stationary
(shape) information about viscosity, viscosity could be judged with
certain accuracy even for single stationary images. To test whether
the model could predict the rating data, we calculated the shape
statistics for all 60 frames of the 50 movies and derived a combined
prediction for each movie, as described above. For each of the ten
scenes the same model predicted the rating data very well, as indi-
cated by the high correlations between the average rating scale of
each movie and the combined prediction (M =.91, SD=.11). The
combined prediction for the grand mean averaged across all
movies was even higher (r =.98, p <.01). Taken together, this indi-
cates that the combination of shape statistics used in the model
captures general visual features for fluid viscosity perception in a
variety of different scenes and across different types of subjective
task.

5. Discussion

Different liquids adopt distinctive shapes in response to their
internal properties, and interactions with gravity and other objects.
The purpose of the current study was to measure and predict how
subjects use static shape cues to visually distinguish liquids with
different viscosities. Using MLDS, we derived perceptual scales
for different time points from fluid simulations. We found that
the shape of these scales was quite similar across different time
frames—although more or less strongly pronounced, depending
on the distinctiveness of the fluid shapes at that point in time.
For example, at the start of the simulation—when the liquid had
barely emerged from the source—all liquids were almost exactly
the same shape, leading to a flatter perceptual scale. In contrast,
later in the simulation, the shapes of the different liquids were
more distinct, leading to a steeper perceptual scale. The perceptual
scales were sigmoidal, with smaller perceptual differences for the
lower and upper end of the physical scale, and larger perceptual
differences in viscosity for the intermediate stimuli. Put intuitively,
this suggests a subjective separation of fluids into two broad class-
es: runny liquids that splash and settle vs. thick fluids that ooze
and pile up into clumps. We suggest that this distinction is percep-
tual in origin, based on the statistical similarity in shape between
liquids with different viscosities.

Specifically, we showed that a number of simple 2D shape
statistics vary systematically with physical viscosity, in a way that
predicts a non-linear perceptual scale similar to the one observed
in the MLDS data. These cues capture statistical variations in shape
between fluids with different viscosities. Thus, the visual system
could use such cues to infer fluid viscosity as a proxy for more
complex inverse physics computations. Without any fitting to the
data, the combination of shape statistics predicted the mean per-
ceptual scale strikingly well (r=0.99). The same model also pre-
dicts perceptual rating scales of viscosity using another set of
rendered fluids of varying viscosities interacting with ten different
scenes from another study as well as the rating of the 50 movies of
fluids that was reported in the original paper (Kawabe et al., in
press). This shows that viscosity-related variations in shape are
not specific to our stimuli, but probably reflect more general

regularities. For our stimulus regime, the most promising of the
cues we tested included those that captured the vertical (and to
a lesser extent the horizontal) distribution of the fluid, as well as
measures of its elongation (eccentricity) and curviness. This is con-
sistent with the observation that low viscosity fluids tend to settle
and spread out on the ground, distributing broadly in the horizon-
tal direction leading to less curvy, more elongated shapes with
lower centroids. By contrast, more viscous fluids pile up into cur-
vier mounds and bumps before spreading out more slowly, leading
to a higher centroid. Thus, those cues that best predict subjects’
percepts, intuitively capture the statistical behavior of the fluids
with different viscosities in our scenes, which may account for
why they predicted subjective judgments of liquid viscosity. Our
work is therefore in line with some similar studies on other mate-
rial properties. For example, Marlow, Kim, and Anderson (2012)
follow a similar approach, investigating the properties of highlights
as a cue to the perception of glossiness. They show how interac-
tions between illumination and surface relief can lead to substan-
tial variations in the properties of specular highlights, which have
concomitant effects on the perception of glossiness. They asked
one set of subjects to judge the properties of the highlights (e.g.,
contrast, extent), and found that a linear combination of the ratings
of the low-level image properties predicted the glossiness ratings
made by a different group of subjects. In spirit, this is similar to
our approach, except that we derived our predictors directly from
the images (rather than ratings from other observers).

Given the high correspondence between shape statistics and
the perceptual judgments one might ask if participants in our
experiments were really judging viscosity rather than shape itself.
This reflects a fairly general question of validity in many perceptual
tasks involving ‘appearance’, which is difficult (maybe even impos-
sible) to overcome completely. Here, we used different types of
tasks, in which shape similarity is more (MLDS) or less (rating task)
relevant, and gain similar results. Furthermore, the phenomeno-
logical impression of liquids with different viscosities is quite
strong. Participants expressed no uncertainty about the task; one
look at our stimuli yielded a clear and compelling impression of
viscosity, so that when we asked them to perform viscosity com-
parisons or ratings they found this a natural and intuitive judg-
ment to make. Besides this phenomenological argument, it is
ultimately questionable why using shape to judge viscosity should
be less valid than any other kind of visual viscosity judgment. Vis-
cosity is not an optical feature of a fluid like, for instance, its color.
Imagine a bowl containing a still liquid. Without further visual
information it is impossible to estimate the viscosity of the liquid;
it might not even be obvious to the observer that the material
inside the bowl is a liquid (although experience with other liquids
might lead them to assume that it was). Only after some external
force is applied will the viscosity become apparent. At that stage,
many features would provide potentially useful visual information
about viscosity. Here, we argue that shape is one of them.

It is important to point out that we have measured and modeled
perceptual viscosity functions only in the simplest possible case,
namely when viscosity was the only parameter that differed
between the samples being compared. Under these conditions,
shape varies in a highly systematic way between samples, and it
is likely that practically any measure of shape similarity would
rank order the different fluids correctly. Nevertheless, the fact that
even simple 2D statistics can predict the specific non-linear form of
the perceptual scale suggests that when subjects are asked to judge
viscosity in this context, they rely heavily on some simple mea-
sures of shape similarity. We believe this shows that when other
factors are held constant, comparisons between liquids are based
on intuitive impressions of shape similarity rather than some more
sophisticated estimate of the physical parameters of the liquid,
derived through inverse physics.

j.visres.2015.01.023

Please cite this article in press as: Paulun, V. C,et al. Seeing liquids from static snapshots. Vision Research (2015), http://dx.doi.org/10.1016/



http://dx.doi.org/10.1016/j.visres.2015.01.023
http://dx.doi.org/10.1016/j.visres.2015.01.023

10 V.C. Paulun et al./Vision Research xxx (2015) XxX-Xxx

A more challenging case, which we have not explicitly tested so
far, is ‘viscosity constancy’, i.e., the ability of subjects to perceive a
given fluid as having the same viscosity in different settings. In the
control experiment with additional scenes, subjects had to find a
consistent scale to rate viscosity across the different scenes and
time points, and we found that they could do so to some extent.
However, we did not ask subjects to directly compare apparent vis-
cosity across variations in speed, scene layout, viewpoint, time or
any other factors that also contribute to shape. There are almost
certainly conditions in which simple image statistics will fail to
predict perceptual constancy. For example, early timeframes of dif-
ferent fluids are more similar to one another than an early time-
frame of a particular fluid is to a later timeframe of the same
fluid. If subjects are able to correctly match fluids at different
points in time (i.e., if they exhibit viscosity constancy), this would
be challenging for simple image statistics to predict. Only a process
that could somehow capture or predict how shape evolves over
time could explain constancy across points in time. Additional
work should be conducted to identify when simple measures of
shape similarity break down and more sophisticated internal mod-
els that capture how fluids behave play a role in viscosity
perception.

It is also important to note that we are not proposing the visual
system uses these specific image measurement to represent shape
for viscosity perception. There are many other plausible shape
statistics that could also play a role, especially, more sophisticated
ones that take into account 3D shape, rather than simple 2D out-
lines. If we were for instance to crop our images so that there is
no viscosity information from the outline, we would still be able
tell the differences between liquids based on other shape cues
inside the object. Indeed it would be foolish to interpret our find-
ings as a process model of how the visual system computes vis-
cosity; that is not the intended purpose of the model. Instead,
our goal is to emphasize the more general point that many differ-
ent shape statistics exist which correlate with changes in viscosity.
The transformations in shape that different liquids undergo as they
flow under gravity are rich and highly systematic, causing many
statistical shape regularities to emerge. If we consider each snap-
shot as a point in a high-dimensional shape space, then liquids
with different viscosities occur at different locations within the
space. As long as other factors are held constant, projecting the dif-
ferent points onto almost any shape statistic would make it possi-
ble to distinguish the different fluids. This means that many
different shape cues could support viscosity perception across dif-
ferent contexts. Here, we intuitively selected twenty easy-to-com-
pute cues, more or less arbitrarily. The fact that so many different
cues correlate with viscosity makes demonstrating the causal role
of any given image measurement quite challenging. However, we
believe that much more important than the role of any specific
cue, is the general observation that the visual system could draw
on a wide constellation of different measurements that are readily
computed by low- and mid-level visual mechanisms. In one of our
control experiments we have shown that observers can indeed reli-
ably use the two-dimensional shape to judge viscosity when no
other cue is available.

Using weighted combinations of multiple shape properties
could give the visual system the flexibility to identify relevant
measures of shape similarity in a wide range of settings. For exam-
ple, while measures of how much the liquid has settled under grav-
ity may be relevant for distinguishing different liquids from one
viewpoint (e.g., side view), from other viewpoints of the same
scene (e.g. top view), this cue may provide no useful information.
At the same time, other cues, such as the smoothness of the con-
tour or the projected area of the liquid may become more diagnos-
tic. We suggest that the visual system flexibly re-weights different
measures of shape similarity depending on the context, describing

the differences between liquids in different ways depending on the
scene.! Thus, even though the physical viscosity of water remains
constant across scenes, in perceptual terms, the perceived viscosity
of the water that sprinkles out of a watering-can may be in some
fundamental way incommensurable with the perceived viscosity of
the water that lies in a rippling puddle. Because the shape properties
that distinguish water from other liquids in these two contexts are
radically different, the visual system may use completely different
measurements to determine water’s viscosity in these two contexts.
Testing this idea and the limits of perceptual constancy are impor-
tant lines for future investigation.

This line of argument suggests that the visual system may not
need to accurately model the physics of the environment in order
to identify liquids or work out their properties. Instead it could
represent different fluids by exploiting statistical regularities in
the typical appearance of fluids in the image. Previous work has
debated whether the perception of various material perception
relies on heuristics derived from image statistics or more sophisti-
cated inverse optics computations (Fleming, 2014; Thompson
et al., 2011), e.g., in the perception of surface gloss (Anderson &
Kim, 2009; Fleming, Dror, & Adelson, 2003; Kim & Anderson,
2010; Motoyoshi et al., 2007), roughness (Ho, Landy, & Maloney,
2006), transparency (Fleming, Jdkel, & Maloney, 2011) and translu-
cency (Fleming & Biilthoff, 2005). Similarly, the estimation of other
physical properties has often been argued to be heuristic or naive
(Gilden & Proffitt, 1989; McCloskey, Caramazza, & Green, 1980;
Nusseck et al., 2007; although see: Hecht, 1996), whereas recent
work has suggested explicit mental ‘simulation’ of physics may
what explains our ability to predict complex processes like the
tumbling of a tower of bricks (Battaglia, Hamrick, & Tenenbaum,
2013). However, here, we wish to speculatively propose a third
alternative that lies between crude heuristics and full inverse
optics computations.

We have suggested that rather than using a fixed mapping
between image measurements and some internal scale of viscosity,
the visual system may flexibly weight different shape features to
represent liquids in different contexts. This approach poses a key
challenge that requires inference machinery that goes beyond the
straightforward application of heuristics. Specifically, having seen
only a single fluid in a given context, how does the visual system
know which aspects of the shape are the relevant ones to use to
determine viscosity? How can the visual system predict which
shape properties would vary (and by how much) were it to be pre-
sented with a different fluid in the same context? In other words,
how does the brain work out the weights when it does not have
multiple liquids to compare?

We speculatively suggest that to weight different shape cues,
the visual system may hypothesize—on the fly—which aspects of
shape are most relevant, based on perceptual organization process-
es and previous experience. Observable properties of a shape can
provide cues to the (unobservable) underlying generative process-
es that have yielded that shape (e.g., Feldman, 1992, 1995;
Feldman & Singh, 2006; Hoffman & Richards, 1984; Koffka, 1935/
1963; Leyton, 1989, 1999; Sprote & Fleming, 2013). In particular,
regularities in the shape (e.g., symmetries, periodic elements or
other non-generic relationships between features) provide evi-
dence of a systematic (i.e., non-random) generative process. Thus,
it makes sense to infer that new sample liquids—which differ in
other respects—may preserve such shape features. By contrast,
salient features that distinguish a given shape from other previous-
ly seen shapes may be key areas where the shape is likely to vary
from sample to sample. We suggest that based on such perceptual

! This appears in our model as a weighting of the different statistics in proportion
to the total range of values for different viscosities in a given scene, see Methods.
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organization principles, the visual system may be able to cast
hypotheses about how the shape is likely to vary from sample to
sample. For example, if a particular snapshot of a liquid contains
a pronounced puddle, the visual system may hypothesize that
other liquids may vary in the size or shape of that puddle, and
therefore that measures of the extent of the puddle feature should
be weighted strongly in determining viscosity. This active
recalibration of the representation based on hypotheses about
how appearance might vary is quite different from a passive appli-
cation of fixed heuristics. Indeed, it is a form of ‘internal model’ of
liquid behavior derived from perceptual organization and previous
experience. However, unlike a physical model it does not involve
explicitly estimating the liquid’s physical parameters, but rather
on characterizing its distinctive shape features and how they might
change under different circumstances. That is, it is a model of the
behavior of the appearance of the liquid (as it manifests in the
image) rather than a model of its physical behavior. We call such
representations ‘statistical appearance models’ (Fleming, 2014),
because they involve probabilistic inference about likely variations
in appearance.

Clearly these speculations go far beyond what can be inferred
from the data presented here. Extensive theoretical work is
required to turn this speculation into a plausible model and to
investigate how symmetries and other regularities can guide the
inference of generative processes. Moreover, additional
experimental work would then be required to test specific predic-
tions of this approach.

If observers rely on a variety of statistical cues, the resulting
estimates will often be imperfect. Depending on the specific cues
they use, their estimate may vary. Thus, variability in the quantity
or quality of the viscosity cues might be responsible for the differ-
ences in perceptual scales between frames in our experiments.
Likewise, different observers might have weighted the cues differ-
ently, leading to the small observed inter-individual differences.

Here, we focussed on static 2D shape-related measurements,
although there are clearly many other cues the brain could use
to identify fluids. These include, for example, 3D shape properties,
optical cues (e.g., color and translucency), and obviously motion
and speed related cues, which we have shown to be important in
a separate study (Kawabe et al., in press). In that study, we isolated
motion cues and eliminated shape information using arrays of
noise patches whose motion statistics matched fluid simulations.
Here, by contrast, we have isolated shape cues and eliminated
motion, by studying viscosity perception in static snapshots. Other
researchers have shown that static snapshots can lead to a vivid
impression of objects in motion, and that this can be sufficient to
evoke activity in cortical area MT (e.g. Kourtzi, 2004; Kourtzi &
Kanwisher, 2000; Senior et al., 2000). Here, we show that specific
physical properties that are normally associated with motion, like
viscosity, can also be inferred from static snapshots. Under natural
viewing conditions, when motion, shape and optical cues are pre-
sent simultaneously, it seems likely that multiple cues are com-
bined for viscosity perception. Depending on the specific scene
characteristics it might be that only some subset of the cues are
available or that cue combination or weighting is adapted to cur-
rent constraints.

The fact that subjects can reliably identify liquids based on their
shape also has important consequences for theories of object
recognition. Unlike most objects, which have relatively stable
shapes, fluids are highly mutable. The fact that a given liquid can
take on an enormous variety of different shapes, suggests that
the representations of shape cannot be limited to fixed configura-
tions of specific features or parts. Instead, high-level shape repre-
sentations must also include statistical aspects of shape, to
capture those characteristics that are common across widely
diverging conditions. As mentioned above, Fleming (2014) has

recently suggested that the visual system may represent material
appearance using statistical generative models, by seeking to pre-
dict which image features are most likely to vary systematically
across different exemplars. It is interesting to speculate whether
the mechanisms that enable the brain to identify liquids across
such diverse appearances may also play a role in predicting object
appearance across different viewing conditions, which is central to
object recognition.
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